
https://bit.ly/pmt-edu-cc https://bit.ly/pmt-cc

 
 
 
 
 

 
 
 

OCR Computer Science GCSE 
2.5 – Programming languages and 

Integrated Development Environments 
Advanced Notes 

 
 
 

 

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

This work by PMT Education is licensed under CC BY-NC-ND 4.0



2.5.1 Languages 

Programming languages are used to write instructions that computers can execute. They fall 
into two main categories: 

●​ High-level languages (e.g. Python, Java, C#)​
 

●​ Low-level languages (e.g. Assembly language, Machine code)​
 

High-level languages 

Designed for humans to read and write, with instructions similar to structured English (such 
as print and while). Most computer programs are written using high-level languages. 
Examples: Python, C#. 

Advantages Disadvantages 

Easy for humans to understand and debug 
as the instructions are closer to English 

Slower to execute than low-level languages 

Programs written are portable between 
different hardware, since they can be 
translated into machine code for each 
specific type of processor 

Must be translated into machine code, 
which can be less efficient than if it was 
originally written as machine code 

 

Low-level languages 

Closer to machine code (binary). Examples: Assembly language, Machine code 

Advantages Disadvantages 

Faster and more efficient to execute Hard to read and write 

Gives more control over hardware, and 
direct control of the registers 

Not portable – specific to one type of 
processor 

 

 

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu



Translators 

Computers only understand machine code, so all programs written in high-level or assembly 
languages must be translated before they can be executed. Machine code is expressed in 
binary and is specific to a processor or family of processors. 

Types of translators 

There are two types of program translator: compilers and interpreters. 

Compilers 
 
A compiler can be used to translate programs written in high-level languages like C# and 
Python into machine code. Compilers take a high-level program as their source code, check 
it for any errors and then translate the entire program at once. If the source code contains an 
error, it will not be translated. Because compilers produce executable files for the machine 
they were compiled on, they are said to be platform specific. 
 
Once translated, a compiled program can be run without needing to be recompiled. This is 
not the case with interpreters. 

Interpreters 

An interpreter translates high-level languages into machine code and executes it line-by-line. 
Interpreters do not generate machine code directly - they call appropriate machine code 
subroutines within their own code to carry out statements. 

Rather than checking for errors before translation begins (as a compiler does), interpreters 
check for errors as they go. This means that a program with errors in can be partially 
translated by an interpreter until the error is reached. 

When a program is translated by an interpreter, both the program source code and the 
interpreter itself must be present. This results in poor protection of the source code 
compared to compilers which make the original code difficult to extract. 

Comparison of compilers and interpreters 
 

Compiler Interpreter 

Checks source code for errors line-by-line 
before beginning translation Translation begins immediately 

Entire source code translated at once Each line is checked for errors and then 
translated sequentially 

No need for source code or compiler to be 
present when the translated code is 

executed 

Both the source code and the interpreter 
must be present when the program is 

executed 

Protects the source code from extraction Offers little protection of source code 

 

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu



2.5.2 The Integrated Development Environment (IDE) 
 

The need for an Integrated Development Environment 

Developing programs can be difficult, especially having to write clear and maintainable code. 
IDEs exist to provide programmers with features which make writing code much easier, 
these include: 
 

●​ Editors 

●​ Auto-indentation 

●​ Auto-suggestion 

●​ Auto-correction 

●​ Colour coding 

●​ Line numbers 

●​ Debugging tools 

●​ Variable tracing 

●​ Interpreters (type of translator) 

 

Editors provide the platform for programmers to write and develop code, and contain 
features such as line numbering, colour coding, auto-indent, amongst others. 

Error diagnostics help identify errors made when writing code. An IDE may highlight parts 
of code, such as missing brackets, speech marks or colons, as well as point out the line 
number on which the error is taking place. Some IDEs may also give possible ways of fixing 
the error. 

Run-time environments allow programs to run on a computer it may not have been 
designed to run on. This is done by creating a virtual machine, which emulates a different 
computer system so that the program may run on it. 

Translators are used to convert high-level languages, such as program code (Python) into 
machine code so that the program can be run by the processor. 

 

 

 
 

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu


	Programming languages are used to write instructions that computers can execute. They fall into two main categories: 
	●​High-level languages (e.g. Python, Java, C#)​ 
	●​Low-level languages (e.g. Assembly language, Machine code)​ 
	High-level languages 
	Designed for humans to read and write, with instructions similar to structured English (such as print and while). Most computer programs are written using high-level languages. Examples: Python, C#. 
	Advantages 
	Disadvantages 

	Easy for humans to understand and debug as the instructions are closer to English 
	Slower to execute than low-level languages 
	Programs written are portable between different hardware, since they can be translated into machine code for each specific type of processor 
	Must be translated into machine code, which can be less efficient than if it was originally written as machine code 
	 
	Low-level languages 
	Closer to machine code (binary). Examples: Assembly language, Machine code 
	Advantages 
	Disadvantages 

	Faster and more efficient to execute 
	Hard to read and write 
	Gives more control over hardware, and direct control of the registers 
	Not portable – specific to one type of processor 
	 
	Translators 
	Computers only understand machine code, so all programs written in high-level or assembly languages must be translated before they can be executed. Machine code is expressed in binary and is specific to a processor or family of processors. 
	Types of translators 
	Compilers 
	Interpreters 

	Comparison of compilers and interpreters 
	The need for an Integrated Development Environment 

